28,797 research outputs found

    Radio Observations of AGN in Low Surface Brightness Galaxies

    Full text link
    We present preliminary results of a study of the low frequency radio continuum emission from the nuclei of Giant Low Surface Brightness (LSB) galaxies. We have mapped the emission and searched for extended features such as radio lobes/jets associated with AGN activity. LSB galaxies are poor in star formation and generally less evolved compared to nearby bright spirals. This paper presents low frequency observations of 3 galaxies; PGC 045080 at 1.4 GHz, 610 MHz, 325MHz, UGC 1922 at 610 MHz and UGC 6614 at 610 MHz. The observations were done with the GMRT. Radio cores as well as extended structures were detected and mapped in all three galaxies; the extended emission may be assocated with jets/lobes associated with AGN activity. Our results indicate that although these galaxies are optically dim, their nuclei can host AGN that are bright in the radio domain.Comment: To appear in proceedings IAU Symp 244, 'Dark Galaxies and Lost Baryons', June 2007, 2 pages including 1 figur

    2H and 13C NMR studies on the temperature-dependent water and protein dynamics in hydrated elastin, myoglobin and collagen

    Full text link
    2H NMR spin-lattice relaxation and line-shape analyses are performed to study the temperature-dependent dynamics of water in the hydration shells of myoglobin, elastin, and collagen

    How ripples turn into dots: modeling ion-beam erosion under oblique incidence

    Full text link
    Pattern formation on semiconductor surfaces induced by low energetic ion-beam erosion under normal and oblique incidence is theoretically investigated using a continuum model in form of a stochastic, nonlocal, anisotropic Kuramoto-Sivashinsky equation. Depending on the size of the parameters this model exhibits hexagonally ordered dot, ripple, less regular and even rather smooth patterns. We investigate the transitional behavior between such states and suggest how transitions can be experimentally detected.Comment: 11 pages, 4 figures, submitted for publication, revised versio

    System Size and Energy Dependence of Dilepton Production in Heavy-Ion Collisions at SIS Energies

    Full text link
    We study the dilepton production in heavy-ion collisions at energies of 1-2 AGeV as well as in proton induced pp, pn, pd and p+A reactions from 1 GeV up to 3.5 GeV. For the analysis we employ three different transport models - the microscopic off-shell Hadron-String-Dynamics (HSD) transport approach, the Isospin Quantum Molecular Dynamics (IQMD) approach as well as the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. We confirm the experimentally observed enhancement of the dilepton yield (normalized to the multiplicity of neutral pions Nπ0N_{\pi^0}) in heavy-ion collisions with respect to that measured in NN=(pp+pn)/2NN = (pp+pn)/2 collisions. We identify two contributions to this enhancement: a) the pNpN bremsstrahlung which scales with the number of collisions and not with the number of participants, i.e. pions; b) the dilepton emission from intermediate Δ\Delta's which are part of the reaction cycles ΔπN;πNΔ\Delta \to \pi N ; \pi N \to \Delta and NNNΔ;NΔNNNN\to N\Delta; N\Delta \to NN. With increasing system size more generations of intermediate Δ\Delta's are created. If such Δ\Delta decays into a pion, the pion can be reabsorbed, however, if it decays into a dilepton, the dilepton escapes from the system. Thus, experimentally one observes only one pion (from the last produced Δ\Delta) whereas the dilepton yield accumulates the contributions from all Δ\Delta's of the cycle. We show as well that the Fermi motion enhances the production of pions and dileptons in the same way. Furthermore, employing the off-shell HSD approach, we explore the influence of in-medium effects like the modification of self-energies and spectral functions of the vector mesons due to their interactions with the hadronic environment.Comment: 46 pages, 48 figures, version to be published in Phys. Rev.

    Representation of entanglement by negative quasi-probabilities

    Full text link
    Any bipartite quantum state has quasi-probability representations in terms of separable states. For entangled states these quasi-probabilities necessarily exhibit negativities. Based on the general structure of composite quantum states, one may reconstruct such quasi-propabilities from experimental data. Because of ambiguity, the quasi-probabilities obtained by the bare reconstruction are insufficient to identify entanglement. An optimization procedure is introduced to derive quasi-probabilities with a minimal amount of negativity. Negativities of optimized quasi-probabilities unambiguously prove entanglement, their positivity proves separability.Comment: 9 pages, 2 figures; An optimization procedure for the quasi-probabilities has been adde

    Radio Observations of the AGN and Gas in Low Surface Brightness Galaxies

    Get PDF
    LSB galaxies have low metallicities, diffuse stellar disks, and massive HI disks. We have detected molecular gas in two giant LSB galaxies, UGC 6614 and F568-6. A millimeter continuum source has been detected in UGC 6614 as well. At centimeter wavelengths we have detected and mapped the continuum emission from the giant LSB galaxy 1300+0144. The emission is extended about the nucleus and is most likely originating from the AGN in the galaxy. The HI gas distribution and velocity field in 1300+0144 was also mapped. The HI disk extends well beyond the optical disk and appears lopsided in the intensity maps.Comment: one page; submitted to proceedings of IAU Symposium 235: Galaxy Evolution across the Hubble Tim

    The AGN and Gas Disk in the Low Surface Brightness Galaxy PGC045080

    Get PDF
    We present radio observations and optical spectroscopy of the giant low surface brightness (LSB) galaxy PGC 045080 (or 1300+0144). PGC 045080 is a moderately distant galaxy having a highly inclined optical disk and massive HI gas content. Radio continuum observations of the galaxy were carried out at 320 MHz, 610 MHz and 1.4 GHz. Continuum emission was detected and mapped in the galaxy. The emission appears extended over the inner disk at all three frequencies. At 1.4 GHz and 610 MHz it appears to have two distinct lobes. We also did optical spectroscopy of the galaxy nucleus; the spectrum did not show any strong emission lines associated with AGN activity but the presence of a weak AGN cannot be ruled out. Furthermore, comparison of the Hα\alpha flux and radio continuum at 1.4 GHz suggests that a significant fraction of the emission is non-thermal in nature. Hence we conclude that a weak or hidden AGN may be present in PGC 045080. The extended radio emission represents lobes/jets from the AGN. These observations show that although LSB galaxies are metal poor and have very little star formation, their centers can host significant AGN activity. We also mapped the HI gas disk and velocity field in PGC 045080. The HI disk extends well beyond the optical disk and appears warped. In the HI intensity maps, the disk appears distinctly lopsided. The velocity field is disturbed on the lopsided side of the disk but is fairly uniform in the other half. We derived the HI rotation curve for the galaxy from the velocity field. The rotation curve has a flat rotation speed of ~ 190 km/s.Comment: Paper contains 14 figures and 4 tables. Figures 8, 10 (color) and 13 supplied separately. Accepted for publication in MNRA

    True photo-counting statistics of multiple on-off detectors

    Full text link
    We derive a closed photo-counting formula, including noise counts and a finite quantum efficiency, for photon number resolving detectors based on on-off detectors. It applies to detection schemes such as array detectors and multiplexing setups. The result renders it possible to compare the corresponding measured counting statistics with the true photon number statistics of arbitrary quantum states. The photo-counting formula is applied to the discrimination of photon numbers of Fock states, squeezed states, and odd coherent states. It is illustrated for coherent states that our formula is indispensable for the correct interpretation of quantum effects observed with such devices.Comment: 7 pages, 4 figure

    Kinetostatic Analysis and Solution Classification of a Planar Tensegrity Mechanism

    Full text link
    Tensegrity mechanisms have several interesting properties that make them suitable for a number of applications. Their analysis is generally challenging because the static equilibrium conditions often result in complex equations. A class of planar one-degree-of-freedom (dof) tensegrity mechanisms with three linear springs is analyzed in detail in this paper. The kinetostatic equations are derived and solved under several loading and geometric conditions. It is shown that these mechanisms exhibit up to six equilibrium configurations, of which one or two are stable. Discriminant varieties and cylindrical algebraic decomposition combined with Groebner base elimination are used to classify solutions as function of the input parameters.Comment: 7th IFToMM International Workshop on Computational Kinematics, May 2017, Poitiers, France. 201
    corecore